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Abstract This document outlines the use of an algorithm
to filter out impossible crystal-packing arrangements
based on steric considerations. Within an exhaustive grid
search frame, the space sample is reduced by analysis of
spherical areas where atom pairs from different rigid units
might clash.

This technique finds areas in the state space where the
global energy minimum might lie. The minimum can then
be found by the usual methods of molecular modeling
restricted to these particular areas.

Only a tiny fraction of atom pair distances need to be
tested; usually a single quantity on average per one state
of model space! For example, a crystal of three rigid
molecules, each containing 12 atoms, has 3�12�12=432
atom pairs just in one unit cell but our method needs to
test on average 1 to 4 atom pairs per state.

Using modern computers, about 1012�15 models can be
tested within several hours or days. For example, a crystal
model with six rotational degrees of freedom (two rigid
molecules in the unit cell) each with step 3� can be tested
in a few hours on a 1-GHz x86 processor-based machine.
The method presented here has been implemented in the
SUPRAMOL program.

Keywords Molecular modeling · Crystal structure
prediction · Energy minimization · Crystal packing

Introduction

The goal of molecular modeling is to predict the
particular arrangement of molecules in the crystal unit
cell, which it is hoped will to be realized in nature. This is
achieved by finding the global energy minimum. Sto-

chastic methods (e.g. Monte Carlo, random kick method,
genetic algorithms), molecular dynamics or deterministic
grid searches can be used to achieve this requirement [1].
Despite the widely used stochastic approaches, a grid
search can examine the whole space of possible crystal
arrangements and thus one can be sure to find the global
energy minimum. On the other hand, grid search methods
are rather time consuming and can be applied only on
small crystal structures—up to one hundred atoms per
crystal unit cell. Although nowadays it is trivial to solve a
single crystal X-ray structure containing one hundred
atoms per unit cell, unequivocally predicting such a
structure is currently still hopeless [2, 3].

There are a number of different computer programs
developed to be used in crystal structure prediction. Most
of them use an empirical energy as their function to
classify the fit; e.g. CRYSCA [4], DMAREL [5],
MOLPAK [6], MSI-PP [7, 8], Zip-Promet [9] along with
those that use grid search methods MPA [10, 11],
UPACK [12, 13]. Statistical potentials are used in
FlexCryst [14] and the statistical fit in PackStar or Rancel
[15]. The reader can find more complex descriptions and
comparisons of these programs in [2, 3].

Thus having some knowledge about crystal content,
one can now try to find the best arrangement of
molecules. Atoms in the crystal unit cell are spread into
rigid units (molecules or parts of molecules that can be
taken as rigid for the first stage), and an attempt is made
to find the position and orientation of each part, whereby
the total crystal energy reaches the global minimum. This
documented method is in fact only a small fraction of the
whole process; an extremely fast primary filter that can be
implemented to variate grid searches.

To find the global minimum, the whole space of
possible crystal states should be searched. Thus, during
the first stage this space is defined by setting appropriate
ranges of internal coordinates. Secondly, the grid of
testing models is spread over it. This method finds areas
where the particular rigid units do not overlap, and should
be followed up by more sophisticated searches within
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these areas, which are only a small fraction of the whole
state space.

Despite the widely used methods relying on interaction
lists used in molecular dynamics, as in the Charmm
computer program [16] we use a different approach. The
main idea allowing the use of interaction lists in
molecular dynamics, “The state of crystal changes slowly
during the time”, is not satisfied here because the grid
should cover the whole state space of the crystal. Even
though this idea can also be adopted somehow, we can
instead gain even more by taking into account the specific
properties of the grid itself.

Basic definitions

A crystal unit cell (any space group) can be defined as
containing N rigid units—molecules or parts of molecules
that can be taken as rigid bodies.

Obviously, in the energy minimum the particular rigid
units should not overlap! Thus a minimal acceptable
distance d0 is set for each relevant atomic pair. This can
be the addition of atomic radii defined in some way, or a
distance given specifically with respect to interacting
molecules. The important fact is that for each atom pair
that is combined of atoms from different rigid units we
have defined a minimal acceptable distance.

For each rigid unit i2{1, ..., N} a set of testing
positions Pi is defined. This set should “uniformly” cover
(as much as possible) the whole positional space of the ith
rigid unit within the unit cell of the crystal, and with
respect to positions of other parts (if bonded or related by
symmetry). This space covering can be characterized by
the maximal distance Ddi

max of an arbitrary space point
from the nearest testing position. In the same way, a set of
testing orientations Oi is defined, characterized by the
maximal angle difference Dai

max of any point of the
orientation space, from the nearest testing orientation. For
more details and definitions of different “best coverings”
for spaces and coverings of the sphere see [17, 18].

The “change of orientation” refers to a rotation of a
rigid unit around a specified point (e.g. the center of mass
or an atom—i.e. bonded to another rigid unit). This point
can be chosen freely with respect to the internal
coordinates of the rigid unit, so it translates when the
position of the rigid unit changes. This point can be called
the rotation center CI. The orientation is then given by
three coordinates; e.g. Euler angles or spherical coordi-
nates J,f of some other atom of rigid units with respect to
the rotation center and the rotation angle w around the
axis given by this atom and the rotation center. The most
important thing that has been defined is the rotation center
of each rigid unit, and that each atom Ak of the ith rigid
unit (k2{1...ni}) has a fixed distance from the rotation
center that is denoted ri

k.
Once the sets of testing points of all rigid units have

been defined, next comes the total number of testing
models

n ¼
YN

i¼1

n Pið Þn Oið Þ ð1Þ

and the top limit of maximal displacement of any atom
when approximating the arbitrary state of a crystal by
testing point

Ddmax Ak
i

� �
¼ Ddmax

i þ Damax
i rk

i ð2Þ

Globally acceptable space states

There can be globally three types of rigid units in the
model:

– Static—the space Pi�Oi contains only one state (for
example the rigid layer in a crystal concerning
intercalation, the rigid skeleton of zeolite structure,
etc.), or the rigid unit made static during the compu-
tation (see. below).

– Dependent—the states of Pi�Oi depend on the posi-
tional and orientational states of other rigid units (not
by crystal symmetry which is already set when the
state space is defined). The most common example is
introduced by the chemical bond of a fixed length and
the valence angles between two rigid units—only the
torsion angle can change. In such a case one part of the
molecule is shifted and rotated independently and the
other depends on it.

– Independent —the states of Pi�Oi do not depend on
states of other rigid units.

While filtering out the overlapping states of the crystal
the following steps should be repeated:

1. Test the interaction of independent rigid units at first
with their own symmetry equivalents within the crystal
and then with all static units. This way, all the
unacceptable states are filtered out right from the space
Pj�Oi. This saves time wasted in further testing.

2. Test all the mutual interactions of independent rigid
units (This is the most time-consuming part of the
algorithm and its optimization determines the perfor-
mance of the whole procedure)—the key point of this
method, described in the next section. The implemen-
tation in Supramol [19] tests about 500,000–700,000
models per second on a 1.6-GHz x86 processor
machine (or 120,000–150,000 on a RISC 250-MHz
processor).

3. Concerning one particular acceptable state of inde-
pendent rigid units, these units become static and some
other previously dependent rigid units become inde-
pendent. Thus, the procedure can be repeated from
point 1 until all the rigid units are exhausted.

Finally comes the area of all acceptable arrangements
of the crystal unit cell with respect to given minimal
distances of all atom pairs.
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The key idea of the documented method

Up to this point nothing extra was said. The following
paragraph describes the key idea of the whole method—
the way to test the mutual interaction of two independent
rigid units efficiently.

Let us take the ith and jth rigid units and determine the
area of acceptable mutual arrangement (the acceptable
points of space Oi�Oj) while positions of both rigid units
are fixed. Instead of a full test of n(Oi)�n(Oj) orientation
states, helping data is calculated for each state of both
rigid units. It is only n(Oi)+n(Oj) states, which is a much
smaller number; e.g. for n(Oi)=n(Oj)=2,000 it is 1,000
times smaller! This helps to eliminate the number of atom
pairs tested for distance rapidly.

Now concerning the major idea of this method. When
the position of the rigid unit is fixed, all its atoms can
move only on the spheres with center at the point Ci and
radius ri

k. When considering an arbitrary atom pair with
its first atom Ak from the i-th rigid unit and its second
atom Al from the j-th rigid unit, a restricted area Fi

k can
be defined for the first atom or restricted area Fj

l for the
second atom wherever

rk
i � dij

�� �� < rl
j þ dkl

0 or rl
j � dij

���
��� < rk

i þ dkl
0 ð3Þ

holds. From Fig. 1 it can be seen that the atoms can be
closer than their minimal distance d0

kl only when both are
in their restricted areas. When one of them is out of the
restricted area we do not need to test this atom pair for
distance. Therefore we associate a set of atom pairs, that
can cause a need for the distance test, with each state from
Oi or Oj respectively.

When these sets are pre-computed for each single state
from Oi and Oj, one can simply go through the space
Oi�Oj and test the distance of only these atom pairs that
are in the intersection of the two appropriate atom pair
sets—one corresponding to the particular state of the i-th
rigid unit and the second corresponding to the particular
state of the jth rigid unit.

Important implementation details

Ordering of atom pairs

The calculation of the interaction of two rigid units may
be speeded up by the proper ordering of the tested atom
pairs.

The best representation of the above defined sets of
atom pairs is a binary array (the intersection of such sets
being simply the binary AND). Each mutual atom pair of
both interacting rigid units either is or is not there. This

way implicit ordering of all the inter-rigid unit atom pairs
is defined; the ordering in which they will be tested for
distance.

The best way is to order the atom pair with respect to a
probability of collision. The probability of collision of k-
th atom of i-th rigid unit with l-th atom of j-th rigid unit
when positions of atoms on spheres (the spatial angle W)
are random is

Pkl ¼
1

4p

Z
dWk �

1
4p

Z

p

dWl � Pkl Wk; Wlð Þ ð4Þ

where Pkl(Wk;Wl) is 1 in collision and 0 elsewhere. The
probability (4) can be evaluated by integration over
distance x of the l-th atom and the rotation center CI by

Pkl ¼
Zr
l
j�dij

rl
j�dij

���
���

r xð Þdx

where

Fig. 1 Restricted area (thick red lines) of an atom Ak that belongs to
i-th rigid unit and the restricted area of an atom Al that belongs to j-
th rigid unit, while their interaction is considered with the minimal
acceptable distance d0

kl. Ci and Cj are rotation centers of both rigid
units. When the i-th (or alternatively j-th) rigid unit changes
orientation the atom Ak (or Al) resides on a sphere of radius ri

k (rj
l).

dij is the distance between rigid unit centers. If an atom is in its
restricted area this does not mean that both atoms are closer than
d0

kl—the second atom can be in any other position. Neither do both
atoms need to be closer than d0

kl, if they are in their restricted areas.
On the other hand, the atoms can be closer than their minimal
acceptable distance only when they are both in their restricted areas

r xð Þ ¼

0
dkl

0

� �2
� x�dijð Þ2

2rk
i rl

jdij

2x
rl
jdij
;

; x 2

jx� rk
i j > dkl

0 i;

h rk
i � dkl

0 j; rk
i þ dkl

0

�� �
;

x < dkl
0 � rk

i ;

No collision

Partial collision

Fullcollision

8
>>>>><

>>>>>:
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Thus we have the analytical formula

Pkl ¼
3x dkl

0

� �2 � x� dij

� �3

6rk
i rl

jdij

" #min rl
jþdij;r

k
i þdkl

0

� �

max rl
j�dij

���
���; rk

i �dkl
0

�� ��
� � ð5Þ

plus

x2

rl
jdij

" #min rl
jþdi;d

kl
0 �rk

i

� �

dkl
0 �rk

i

when dkl
0 � rk

i > rl
j � dij

���
���

Using this ordering, the average number of atom pairs
tested for distance is on the order of units per one testing
state of Oi�Oj. When having a large number of states (in
case d0 depends on the covering of the state space; see
below) of each rigid unit it often becomes very close to 1!
This number does not depend much on the number of
atoms in the rigid units—it is instead dependent on dij and
how closely packed the crystal is. Fortunately, the large
majority of crystals are rather closely packed! Even
though the number of atoms in a rigid unit can commonly
reach 10, the number of mutual atom pairs (when the
crystal symmetry copies are also considered), which is of
the order of hundreds or thousands, this method would
seem to be amazingly fast!

The choice of a suitable d0

Let us take the basic d0
kl for all atom pairs given by the

chemical properties of given molecules. These parameters
can be modified due to the geometry of the model in order
to reach some properties for the resulting area of the
acceptable arrangement of the crystal unit cell. We have
three basic possibilities.

1. No modification—the result ensures that all the tested
points are acceptable, but does not say anything about
their neighborhood in the space of arrangements.

2. d0
kl is increased by the maximum possible displace-

ment of atoms (2). This way ensures that the global
energy minimum will not be skipped, but on the other
hand the run will involve many states that will not
become acceptable nor within the neighborhood of the
testing state and must be discarded later.

3. Decrease d0
kl by the maximum possible displacement

(2)—this way an area is found that is surely acceptable
as a compact region, but the global minimum can be
omitted as well many other acceptable states with the
unacceptable neighborhood.

Conclusion

While performing a deterministic grid search to find the
global energy minimum of the crystal packing, the

method documented here can be used successfully for
the first stage—as the primary filter. Although rough, it is
very fast (it reduces the number of atom pairs to be tested
for distance on an average of 102–103 times) and
efficiently chooses only the states at which the atoms
do not overlap, or may not overlap in some place within
one mesh of the grid. This method very rapidly decreases
the number of states to be further tested by consequent
sophisticated but slower methods (especially for closely
packed crystals); e.g. the method using the crystal energy
computation. In contrast to the widely used stochastic
method, the parameters can be chosen in such a way that
the global minimum can definitely be found! However, it
is likely to take more time. Today’s computers limit
exploration up to 8- or 12-dimensional spaces of internal
parameters.

The algorithm described is implemented in the
program SUPRAMOL [19].
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